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ABSTRACT: Coordination-insertion copolymerization
of allyl monomers with ethylene was developed by using a
palladium/phosphine-sulfonate catalyst. A variety of allyl
monomers, including allyl acetate, allyl alcohol, protected
allylamines, and allyl halides, were copolymerized with
ethylene to form highly linear copolymers that possess in-
chain -CH2CH(CH2FG)- units.

Despite its high potential utility in functionalized polyolefin
synthesis, the polymerization of allyl monomers, CH2d

CHCH2FG (FG = OAc, OH, NH2, halogen, etc.), has received
much less attention than that of the corresponding vinyl
monomers.1 Homopolymerization of allyl monomers is expected
to give polymers corresponding to functionalized polypropylenes
and thus has been the target of intensive research since the 1940s.1a

However, conventional free-radical polymerization of allyl
monomers generally affords only oligomers or low-molecular-
weight polymers because of facile “degradative chain transfer” to
the allyl monomers and the low reactivity of the resulting allyl
radical species (Scheme 1).1,2

Although recent advances in metal-catalyzed coordination
polymerization have enabled the use of various functionalized
olefins,3,4 only a few catalysts have been found to be applicable to
allyl monomer polymerization: Allyl alcohol5,6 and allylamine6,7

have been shown to undergo zirconocene-catalyzed copolymer-
ization with ethylene when pretreated with a stoichiometric amount
of alkylaluminum reagents to mask the functional groups. To our
knowledge, there has been no example in the academic literature
in which other allyl monomers have been copolymerized in
metal-catalyzed coordination-insertion polymerization.8,9

In recent research, we10 and others11 have developed coordi-
nation-insertion copolymerization of fundamental polar vinyl
monomers with ethylene by palladium catalysts bearing a phos-
phine-sulfonate ligand.3e During further investigations to ex-
pand the scope of the copolymerization, the catalytic system was
found to be applicable to allyl monomers. Herein we report the
investigation of the coordination-insertion copolymerization of
allyl monomers, including allyl acetate (2a), allyl alcohol (2b),
allylamines (2c, FG = NH2; 2d, FG = NHBoc), and allyl halides
(2e, FG = Cl; 2f, FG = Br), with ethylene by Pd/alkylphosphine-
sulfonate complex 1 (Scheme 2). The obtained ethylene/2

copolymers have highly linear polyethylene structures with in-
chain FGCH2 groups and thus exhibit higher melting tempera-
tures than the corresponding branched ethylene/vinyl monomer
copolymers produced by conventional radical polymerization.

The copolymerization of allyl monomers and ethylene was
performed in the presence of Pd complex 1 (0.10 mmol)10c in
toluene at 80 �C. The obtained copolymers were purified by
reprecipitation from hot 1,2-dichlorobenzene/CH2Cl2 to give an
essentially pure form of the copolymers. As shown in entries 1-4
of Table 1, allyl acetate 2a was successfully incorporated to form
the linear copolymers.12 Increasing the concentration of 2a led to
an increase in the 2a incorporation ratio with a decrease in
catalytic activity and molecular weight. Thus, the 2a incorpora-
tion ratio could be increased up to 7.9% by conducting the
copolymerization at a lower ethylene pressure (entry 4). When
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the reaction was conducted with 0.01 mmol of the palladium
catalyst, the copolymerization gave the copolymer with almost
the same composition and properties (entry 5). Allyl alcohol
2b reacted sluggishly under 3.0 MPa ethylene but copolymer-
ized at a higher ethylene pressure (4.0 MPa) to give the
copolymer with a molecular weight of 1500 and a 2b ratio of
5.7%, albeit with a low copolymerization activity (entry 6). The
optimal reaction conditions were applicable to other allyl
monomers containing nitrogen and halogen functionalities.
Although allylamine 2c was inert even under 5.0 MPa ethylene
(entry 7), Boc-protected allylamine 2d produced the copoly-
mers with an activity comparable to that of 2a (entries 8 and 9).
Similarly, the copolymers with allyl halides such as allyl
chloride 2e (entry 10) and allyl bromide 2f (entry 11) were
obtained with ∼1% allyl monomer incorporation. Since the
transition-metal-catalyzed coordination copolymerization of
vinyl halides with ethylene has rarely been achieved,13,14 the present
protocol provides a novel strategy for incorporating halogen
functionalities into highly linear polyethylenes.15

According to NMR analyses, the copolymers possess highly
linear polyethylene backbones with FGCH2 groups attached to
the main chain. A representative 13C NMR spectrum measured
under quantitative conditions (ethylene/2e copolymer) is shown
in Figure 1. In all of the ethylene/2 copolymers, the signals of
the carbons R, β, γ, and δ to the FG group (a, b, c, and d,
respectively) were observed in an exactly 1:1:2:2 ratio, indicating
the presence of FGCH2 groups linked to the linear polyethylene
and no repeating unit of allyl monomers. In the case of 2a, 2e, and
2f, two major chain ends were observed: an n-alkyl group (I) as
an initiation chain end and a terminal vinyl group (II) as a
termination chain end.16 The results strongly suggest that the
copolymerization was initiated by the insertion of ethylene into
the Pd-Me bond of 1 to form group I and terminated via β-H
elimination after ethylene insertion or β-FG elimination after
2,1-insertion of an allyl monomer to form group II. It should be
noted that the Pd-hydride species formed in situ by β-H
elimination could be an initiator for the present copolymerization.17

In contrast, the ethylene/2b and ethylene/2d copolymers had an
n-alkyl group (I) as the major chain end.18

The ethylene/2a and ethylene/2d copolymers can be depro-
tected to form the corresponding OH and NH3Cl copolymers,
respectively. Transesterification of ethylene/2a copolymers
(Mn = 5300, Mw/Mn = 2.6, 2a = 3.2%) in the presence of
KOH in toluene/EtOH afforded the ethylene/2b copolymer
without a significant decrease in molecular weight (Mn =
4600, Mw/Mn = 2.4) or FG ratio (2b = 3.3%) (eq 1):

Table 1. Copolymerization of Allyl Monomers with Ethylene by 1a

entry monomer

monomer

(mL)

toluene

(mL)

ethylene

(MPa)

yield

(g)b
activity

(g mmol-1 h-1) Mn (10
3)c

Mw/

Mn

incorp.

(%)d
Teim

(�C)e
Tpm

(�C)f
Tefm

(�C)g

1 2a (FG = OAc) 3.0 12.0 3.0 1.74 5.8 6.7 (15.3) 2.3 1.2 114.9 122.9 126.1

2 2a 7.5 7.5 3.0 1.64 5.5 6.1 (14.0) 2.3 2.4 96.0 115.5 119.3

3 2a 12.0 3.0 3.0 1.38 4.6 5.3 (12.1) 2.6 3.2 82.4 112.9 118.0

4 2a 12.0 3.0 1.5 0.45 1.5 4.4 (10.1) 1.7 7.9 55.2 87.7 103.5

5h 2a 12.0 3.0 3.0 0.36 12.1 6.2j (14.3) 2.3 3.4 86.7 113.4 120.2

6i 2b (FG = OH) 3.0 12.0 4.0 0.19 0.04 1.5 (3.5) 1.7 5.7 80.0 92.7 103.2

7 2c (FG = NH2) 3.0 12.0 5.0 - - - - - - - -
8 2d (FG = NHBoc) (15mmol) 15.0 3.0 1.18 3.9 4.5 (10.2) 2.4 1.8 110.2 117.2 120.6

9 2d (30mmol) 15.0 1.5 0.33 1.1 2.1 (4.8) 1.6 4.5 69.0 101.2 108.9

10 2e (FG = Cl) 3.0 12.0 3.0 0.47 1.6 4.2 (9.7) 2.3 0.9 115.4 124.5 128.0

11 2f (FG = Br) 3.0 12.0 3.0 0.27 0.90 2.8j (6.3) 2.0 1.1 112.3 120.9 124.4
aCopolymerization of 2 with ethylene was performed with 1 (0.10 mmol) in toluene at 80 �C for 3 h in a 50 mL autoclave, unless otherwise noted.
bDetermined after precipitation with MeOH. cNumber-average molecular weight measured by size-exclusion chromatography with Shodex GPC
AT-806MS columns using polystyrene as an internal standard and corrected by universal calibration. Molecular weights before universal
calibration are shown in parentheses. dMolar ratio of incorporated allyl monomers determined by quantitative 13C NMR analyses. e Extrapolated
onset melting temperature obtained using DSC. f Peak melting temperature obtained using DSC. g Extrapolated end melting temperature
obtained using DSC. hCopolymerization was performed with 0.01 mmol of 1. i Reaction time was 48 h. jMeasured with Tosoh TSKgel GMHHR-
H(S)HT columns.

Figure 1. Quantitative 13C NMR spectrum of the ethylene/2e copol-
ymer in entry 10 of Table 1 (1,2,4-trichlorobenzene, 120 �C).
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Ethylene/2d copolymers were treated with aqueous HCl, which
resulted in quantitative deprotection of the Boc group to afford
ethylene/allylammonium copolymers (eq 2):

13C NMR analysis confirmed the complete disappearance of the
Boc group, although the content of the NH3Cl group could not
be determined because of broadening of the signals of the
carbonds R and β to the NH3Cl group.

16

Differential scanning calorimetry (DSC) analyses revealed
that the ethylene/2 copolymers showed melting behavior similar
to that of linear low-density polyethylenes such as ethylene/1-
hexene copolymers:19 as the incorporation ratio of 2 increased,
the DSC traces gradually become broader along with a decrease
in the melting temperature.16 The broadening of these traces
could be explained by the increase of the heterogeneity of the
ethylene/2 copolymers with the increasing comonomer content.
Another significant feature is that the ethylene/2a copolymers
(entries 1-4 in Table 1) exhibit higher melting temperatures
than themoderately branched ethylene/vinyl acetate copolymers
produced by radical processes (Figure 2),20 indicating the
potential applications of the present allyl copolymers as thermo-
stable functionalized polyethylenes.

In summary, we have developed a general method for co-
ordination-insertion copolymerization of allyl monomers with
ethylene that uses the palladium/phosphine-sulfonate catalyst 1.
A variety of allyl monomers, including allyl acetate, allyl alcohol,
protected allylamines, and allyl halides, can be incorporated into
linear polyethylenes within the range of 1-8% molar ratio.
Although the catalytic activity still needs to be improved, the
present method reveals the promising prospect of using allyl
monomers in functionalized polymer synthesis.
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